35 research outputs found

    Subliminal perception of othersā€™ physical pain induces personal distress rather than empathic concern

    Get PDF
    Acknowledgements We thank the members of the research group for their revising this paper. Funding This research was supported by Humanities and Social Science Research Youth Fund Project of the Ministry of Education (19YJC190021) Grants to Juan Song. The funding body has no further role in the design of the study, data collection, analysis, data interpretation, and writing of the manuscript.Peer reviewedPublisher PD

    Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales

    Get PDF
    Biological surfaces with unique wettability in nature have provided an enormous innovation for scientists and engineers. More specifically, materials possessing various wetting properties have drawn considerable attention owing to their promising application prospects. Recently, great efforts have been concentrated on the researches on wetting-induced drag-reduction materials inspired by biology because of their ability to save energy. In this work, the drag-reduction characteristics of the bionic surface with delicate water-trapping microstructures of fish Ctenopharyngodon idellus scales were explored by experimental method. Firstly, the resistance of smooth surface and bionic surface experimental sample at different speeds was carefully tested through the testing system for operation resistance. Then, the contact angle (CA) of fish scale surface was measured by means of the contact angle measuring instrument. It was discovered that the bionic surface created a rewarding drag-reduction effect at a low speed, and the drag-reduction rate significantly displayed a downward trend with the increase in flow speed. Thus, when the rate was 0.66ā€‰m/s, the drag-reduction effect was at the optimum level, and the maximum drag reduction rate was 2.805%, which was in concordance with the simulated one. Furthermore, a contact angle (CA) of 11.5Ā° appeared on the fish scale surface, exhibiting fine hydrophilic property. It further manifested the spreading-wetting phenomenon and the higher surface energy for the area of apical of fish scales, which played an important role in drag-reduction performance. This work will have a great potential in the engineering and transportation field

    Assessment of CO2 enrichment mechanism in integrated coal gasification fuel cell combined cycle system with carbon capture

    Get PDF
    The present research proposes an innovative multi-physics coupled model of different configurations of an integrated coal gasification fuel cell combined cycle (IGFC) system employing Solid Oxide Electrolytic Cell (SOEC) for CO2 capture. Full-system simulation is carried out to examine efficiency. The model incorporates a Solid Oxide Fuel Cell (SOFC), a SOEC, a gas turbine (GT), and multiple recirculation loops operated by two ejectors. The results reveal that compared with traditional power plants, the proposed IGFC system equipped with SOEC can reduce CO2 emission by almost 80%, and operates environmentally beneficial. The efficiency of the system varies greatly depending on the design parameters implemented. The CO2 enrichment phenomenon by SOFC and capture measures of CO2 by SOEC are simultaneously analyzed. In addition, parametric analysis is performed to evaluate the coupling influence of multiple operating parameters on the IGFC system. Recirculation ratios of 0.75 with four times recirculations are found to be the optimal conditions for both SOFC fuel electrode and SOEC air electrode aimed at getting to the highest power generation efficiency and total CO2 capture rate of the system. After systematic optimization of the design parameters, the electrical efficiency and CO2 capture rate of the proposed system could achieve 68.47% and 87.88%, respectively, which are about 20% and 60% greater than those of traditional power plants. Furthermore, after optimizing the control strategy, the fuel utilization rate of the system increases from 63.09% to 83.40%

    Efficient Anti-Fog and Anti-Reflection Functions of the Bio-Inspired, Hierarchically-Architectured Surfaces of Multiscale Columnar Structures

    No full text
    Today, in the fields of optical precision instruments, medical devices, and automotive engineering, the demand for anti-reflection and anti-fog surfaces is growing rapidly. However, the anti-fog function often compromises the efficiency of the anti-reflection function. Therefore, optical precision instruments are always restricted by the inability to combine high anti-reflection efficiency and excellent anti-fog performance into one material. In addition, the synergistic mechanism of harmonizing anti-fogging and anti-reflection is currently unclear, which has a negative impact on the development and optimization of multifunctional surfaces. Herein, bio-inspired anti-fogging and anti-reflection surfaces (BFRSs) possessing multiscale hierarchical columnar structures (MHCS) were obtained using a brief and effective preparation technique, combining the biotemplating method and sol-gel method. Specifically, condensed fog droplets distributed on the BFRS can be absolutely removed within 6 s. In addition, the BFRSs endow the glass substrate with a relatively higher reflectance (17%) than flat glass surfaces (41%). Furthermore, we demonstrated the synergistic mechanism of the anti-fogging and anti-reflection functions of BFRSs. On the one hand, the high transparency benefits from the multiple refraction and scattering of light in the MHCS array. On the other hand, the excellent anti-fogging performance is attributed to the imbalance of the capillary force of the MHCS acting on the liquid film. The explanation for these two mechanisms provides more possibilities for the subsequent preparation of multifunctional surfaces. At the same time, the bionic research concept provides new solutions for the researcher to conquer the combination of high transmission and anti-fog properties for precision optical surfaces

    Multifunctional Biomimetic Composite Coating with Antireflection, Self-Cleaning and Mechanical Stability

    No full text
    Antireflective and self-cleaning coatings have attracted increasing attention in the last few years due to their promising and wider applications such as stealth, display devices, sensing, and other fields. However, existing antireflective and self-cleaning functional material are facing problems such as difficult performance optimization, poor mechanical stability, and poor environmental adaptability. Limitations in design strategies have severely restricted coatingsā€™ further development and application. Fabrication of high-performance antireflection and self-cleaning coatings with satisfactory mechanical stability remain a key challenge. Inspired by the self-cleaning performance of nano-/micro-composite structure on natural lotus leaves, SiO2/PDMS/matte polyurethane biomimetic composite coating (BCC) was prepared by nano-polymerization spraying technology. The BCC reduced the average reflectivity of the aluminum alloy substrate surface from 60% to 10%, and the water contact angle (CA) was 156.32 Ā± 0.58Ā°, illustrating the antireflective and self-cleaning performance of the surface was significantly improved. At the same time, the coating was able to withstand 44 abrasion tests, 230 tape stripping tests, and 210 scraping tests. After the test, the coating still showed satisfactory antireflective and self-cleaning properties, indicating its remarkable mechanical stability. In addition, the coating also displayed excellent acid resistance, which has important value in aerospace, optoelectronics, industrial anti-corrosion, etc

    Research on Small Square PCB Rogowski Coil Measuring Transient Current in the Power Electronics Devices

    No full text
    With the development of China’s electric power, power electronics devices such as insulated-gate bipolar transistors (IGBTs) have been widely used in the field of high voltages and large currents. However, the currents in these power electronic devices are transient. For example, the uneven currents and internal chip currents overshoot, which may occur when turning on and off, and could have a great impact on the device. In order to study the reliability of these power electronics devices, this paper proposes a miniature printed circuit board (PCB) Rogowski coil that measures the current of these power electronics devices without changing their internal structures, which provides a reference for the subsequent reliability of their designs

    Simulated microgravity increases myocardial susceptibility to ischemia-reperfusion injury via a deficiency of AMP-activated protein kinase

    No full text
    Gravitation is an important factor in maintaining cardiac contractility. Our study investigated whether simulated microgravity increases myocardial susceptibility to ischemia-reperfusion (IR) injury. Using the Langendorff-perfused heart model with 300 beats/min pacing, 4-weeks tail suspension (SUS) and control male (CON) SpragueĆ¢ Dawley rats (n=10 rats/group) were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 120 min of reperfusion. Left ventricular end-systolic pressure (LVESP), left ventricular end-diastolic pressure (LVEDP), creatine kinase (CK) and lactate dehydrogenase (LDH) activity, and infarct size were assessed. Data demonstrated that there were significantly increased LVEDP, CK, LDH and infarct size in SUS compared to CON (PThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A Dynamic Case-based Reasoning System for Responding to Infectious Disease Outbreaks

    Get PDF
    Infectious diseases are a global public health problem, which requires timely and effective responses. This study proposes a novel model that contributes to the development of such responses. First, the problem scenario features of infectious disease emergency scenarios are extracted, and the problem scenario is structurally described. A Markov model is adopted to analyze the scenario evolution of the infectious disease outbreaks. Then, a dynamic case-based reasoning model is built. Different matching algorithms are designed for crisp symbols, crisp numbers, interval numbers, and fuzzy linguistic variables. The similarity between the target scenario and various historical scenarios is calculated. Finally, an optimized dynamic emergency decision guide is provided. An experiment is conducted to test the validity and feasibility of the proposed method. The results suggest that the model can realistically simulate the process of infectious disease outbreaks and quickly match the recorded scenarios to generate effective and real-time responses
    corecore